• Email: sales@rumotek.com
  • High Quality China Magnetic Ferrite Compound of DC Motor

    Short Description:

    Hard ferrites based on barium ferrite and strontium powders (chemical formula BaO • 6Fe2O3 and SrO • 6Fe2O3) manufactured. They consist of oxidized metals, thus included in the ceramic materials group. They consist of approx. 90% iron oxide (Fe2O3) and 10% alkaline earth oxide (BaO or SrO) – raw materials which are plentiful and inexpensive. They divide into isotropic and anisotropic, the particles of the latter are aligned in a single
    direction which obtaining better magnetic characteristics. Isotropic magnets are shaped by compressing while anisotropic magnets are compressed within a magnetic field. This provides the magnet with a preferential direction and triples its energy density.


    Product Detail

    Product Tags

    Reliable top quality and great credit score standing are our principles, which will help us at a top-ranking position. Adhering on the tenet of “quality first, consumer supreme” for High Quality China Magnetic Ferrite Compound of DC Motor, We’ve been also regularly wanting to establish relationship with new suppliers to supply ground breaking and intelligent option to our valued clients.
    Reliable top quality and great credit score standing are our principles, which will help us at a top-ranking position. Adhering on the tenet of “quality first, consumer supreme” for China Various Specification Ferrite Magnet, Permanent Magnet, They are sturdy modeling and promoting effectively all over the world. Never ever disappearing major functions within a quick time, it’s a have to for you of fantastic good quality. Guided by the principle of “Prudence, Efficiency, Union and Innovation. the corporation. ake an excellent efforts to expand its international trade, raise its organization. rofit and raise its export scale. We are confident that we are going to have a bright prospect and to be distributed all over the world in the years to come.
    Introduction:
    Hard ferrites based on barium ferrite and strontium powders (chemical formula BaO • 6Fe2O3 and SrO • 6Fe2O3) manufactured. They consist of oxidized metals, thus included in the ceramic materials group. They consist of approx. 90% iron oxide (Fe2O3) and 10% alkaline earth oxide (BaO or SrO) – raw materials which are plentiful and inexpensive. They divide into isotropic and anisotropic, the particles of the latter are aligned in a single
    direction which obtaining better magnetic characteristics. Isotropic magnets are shaped by compressing while anisotropic magnets are compressed within a magnetic field. This provides the magnet with a preferential direction and triples its energy density.
    Advantage:
    As is typical of oxide ceramics, hard ferrite magnets display relatively resistant behavior towards moisture, solvents, alkaline solutions, weak acids, salts, lubricants and gas pollutants. Generally, hard ferrite magnets can therefore be used without additional corrosion protection.
    Feature:
    Due to their great hardness (6-7 Mohs), Ferrite magnets are brittle and sensitive to knocks or bending. During processing, they have to be machined with diamond tools. Operating temperatures with ferrite magnets are generally between –40ºC and 250ºC.
    Application:
    Different shapes are used in utomotive engineering, such as automation and measurement control. Other applications such as Automobile electrical machinery (wipers, sit chair motor), Teaching, Door absorber, Magnetic bike and massage chair, etc.
    Today, hard ferrites represent the largest proportion of permanent magnets produced. In contrast to AlNiCo magnets, hard ferrites are characterized by flux densities but high coercive field strengths. This results in the generally flat shape of the materials. Barium ferrite and strontium ferrite are differentiated depending on the starting material. All stated values were determined using standard samples according IEC 60404-5. The following specifications serve as reference values and may differ.

    Sintered Ferrite Magnet Physical Properties
    Grade Remanence Rev. Temp.   Coeff. Of Br Coercive Force Intrinsic Coercive Force Rev. Temp.-Coeff. Of Hcj Max. Energy Product Max. Operating Temperature Density
    Br (KGs) Hcb (KOe) Hcj (KOe) (BH)max. (MGOe) g/cm³
    Y10T 2.0-2.35 -0.20 1.57-2.01 2.64-3.52 +0.30 0.8-1.2 250℃ 4.95
    Y20 3.2-3.8 -0.20 1.70-2.38 1.76-2.45 +0.30 2.3-2.8 250℃ 4.95
    Y22H 3.1-3.6 -0.20 2.77-3.14 3.52-4.02 +0.30 2.5-3.2 250℃ 4.95
    Y23 3.2-3.7 -0.20 2.14-2.38 2.39-2.89 +0.30 2.5-3.2 250℃ 4.95
    Y25 3.6-4.0 -0.20 1.70-2.14 1.76-2.51 +0.30 2.8-3.5 250℃ 4.95
    Y26H 3.6-3.9 -0.20 2.77-3.14 2.83-3.21 +0.30 2.9-3.5 250℃ 4.95
    Y27H 3.7-4.0 -0.20 2.58-3.14 2.64-3.21 +0.30 3.1-3.7 250℃ 4.95
    Y28 3.7-4.0 -0.20 2.20-2.64 2.26-2.77 +0.30 3.3-3.8 250℃ 4.95
    Y30 3.7-4.0 -0.20 2.20-2.64 2.64-2.77 +0.30 3.3-3.8 250℃ 4.95
    Y30H-1 3.8-4.0 -0.20 2.89-3.46 2.95-3.65 +0.30 3.4-4.1 250℃ 4.95
    Y30BH 3.8-3.9 -0.20 2.80-2.95 2.90-3.08 +0.30 3.4-3.7 250℃ 4.95
    Y30-1 3.6-4.0 -0.20 1.70-2.14 1.76-2.51 +0.30 2.8-3.5 250℃ 4.95
    Y30BH-1 3.8-4.0 -0.20 2.89-3.46 2.95-3.65 +0.30 3.4-4.0 250℃ 4.95
    Y30H-2 3.95-4.15 -0.20 3.46-3.77 3.90-4.21 +0.30 3.5-4.0 250℃ 4.95
    Y20-2 3.95-4.15 -0.20 3.46-3.77 3.90-4.21 +0.30 3.5-4.0 250℃ 4.95
    Y32 4.0-4.2 -0.20 2.01-2.38 2.07-2.45 +0.30 3.8-4.2 250℃ 4.95
    Y33 4.1-4.3 -0.20 2.77-3.14 2.83-3.21 +0.30 4.0-4.4 250℃ 4.95
    Y35 4.0-4.1 -0.20 2.20-2.45 2.26-2.51 +0.30 3.8-4.0 250℃ 4.95

    Note:
    · We remain the same as above unless specified from customer. Curie temperature and temperature coefficient are for reference only, not as a basis for decision.
    · The maximum working temperature of magnet is changeable due to ratio of length and diameter and environment factors.


  • Previous:
  • Next:

  • Write your message here and send it to us